
84
FACTORES DETERMINANTES EN EL PROCESO DE MADURACIÓN Y SU RELACIÓN 
CON LOS DIFERENTES CAMBIOS EN FRUTAS Y HORTALIZAS
Campos, et al.
Reciena Edición Especial Vol.4 Núm. 1 (2024): 79-86
5.  REFERENCIA BIBLIOGRÁFICA
1.  Yun, Z., Gao, H., & Jiang, Y. (2022). Insights into 
metabolomics in quality attributes of posthar-
vest fruit. Current Opinion in Food Science, 45, 
100836. https://doi.org/10.1016/j.cofs.2022.100836
2.  González-Gordo, S., Rodríguez-Ruiz, M., 
López-Jaramillo, J., Muñoz-Vargas, M. A., Palma, 
J. M., & Corpas, F. J. (2022). Nitric Oxide (NO) Di-
erentially Modulates the Ascorbate Peroxidase 
(APX) Isozymes of Sweet Pepper (Capsicum an-
nuum L.) Fruits. Antioxidants, 11(4), 765. https://
doi.org/10.3390/antiox11040765
3.  Kashyap, K., Kashyap, D., Nitin, M., Ramchiary, 
N., & Banu, S. (2020). Characterizing the Nutrient 
Composition, Physiological Maturity, and Eect 
of Cold Storage in Khasi Mandarin (Citrus reticu-
lata Blanco). International Journal of Fruit Scien-
ce, 20(3), 521–540. https://doi.org/10.1080/155383
62.2019.1666334
4.  De los Santos-Santos, M. A., Balois-Morales, R., 
Jiménez-Zurita, J. O., Alia-Tejacal, I., López-Guz-
mán, G. G., Palomino-Hermosillo, Y. A., Beru-
men-Varela, G., & García-Paredes, J. D. (2020). 
Edible Coating Based on Roselle (Hibiscus sa-
bdaria L.) Mucilage Applied to Soursop Fruits 
in Postharvest Storage. Journal of Food Quality, 
2020, 1–12. https://doi.org/10.1155/2020/4326840
5.  Nayab, S., Razzaq, K., Ullah, S., Rajwana, I. A., 
Amin, M., Faried, H. N., Akhtar, G., Khan, A. 
S., Asghar, Z., Hassan, H., & Naz, A. (2020). Ge-
notypes and harvest maturity inuence the nu-
tritional fruit quality of mulberry. Scientia Hor-
ticulturae, 266, 109311. https://doi.org/10.1016/j.
scienta.2020.109311
6.  Gong, X., Wu, X., Qi, N., Li, J., & Huo, Y. (2020). 
Changes in the biochemical characteristics and 
volatile ngerprints of atemoya during posthar-
vest ripening at room temperature. Quality Assu-
rance and Safety of Crops & Foods, 12(4), 26–35. 
https://doi.org/10.15586/qas.v12i4.786
7.  Maldonado-Celis, M. E., Yahia, E. M., Bedoya, 
R., Landázuri, P., Loango, N., Aguillón, J., Res-
trepo, B., & Guerrero Ospina, J. C. (2019). Che-
mical Composition of Mango (Mangifera indica 
L.) Fruit: Nutritional and Phytochemical Com-
pounds. Frontiers in Plant Science, 10. https://
doi.org/10.3389/fpls.2019.01073
8.  Zhang, C., Xiong, Z., Yang, H., & Wu, W. (2019). 
Changes in pericarp morphology, physiology and 
cell wall composition account for esh rmness 
during the ripening of blackberry (Rubus spp.) 
fruit. Scientia Horticulturae, 250, 59–68. https://
doi.org/10.1016/j.scienta.2019.02.015
9.  Lim, Y. J., & Eom, S. H. (2018). Kiwifruit cultivar 
‘Halla gold’ functional component changes du-
ring preharvest fruit maturation and postharvest 
storage. Scientia Horticulturae, 234, 134–139. ht-
tps://doi.org/10.1016/j.scienta.2018.02.036
10.  Skic, A., Szymańska-Chargot, M., Kruk, B., 
Chylińska, M., Pieczywek, P., Kurenda, A., Zdu-
nek, A., & Rutkowski, K. (2016). Determination of 
the Optimum Harvest Window for Apples Using 
the Non-Destructive Biospeckle Method. Sensors, 
16(5), 661. https://doi.org/10.3390/s16050661
11.  Kullaj, E. (2016). New insights on postharvest 
ecophysiology of fresh horticultural crops. In 
Eco-Friendly Technology for Postharvest Pro-
duce Quality (pp. 1–38). Elsevier. https://doi.
org/10.1016/B978-0-12-804313-4.00001-3
12.  Hassan, A., Othman, Z., & Siriphanich, J. (2011). 
Pineapple ( Ananas comosus L. Merr.). In Pos-
tharvest Biology and Technology of Tropical and 
Subtropical Fruits (pp. 194–218e). Elsevier. ht-
tps://doi.org/10.1533/9780857092618.194
13.  Molina-Delgado, D., Larrigaudière, C., & Reca-
sens, I. (2009). Antioxidant activity determines 
on-tree maturation in ‘Golden Smoothee’ apples. 
Journal of the Science of Food and Agriculture, 
89(7), 1207–1212. https://doi.org/10.1002/jsfa.3577
14.  Lima, M. A. C. de, Alves, R. E., & Filgueiras, H. 
A. C. (2006). Mudanças relacionadas ao ama-
ciamento da graviola durante a maturação 
pós-colheita. Pesquisa Agropecuária Brasileira, 
41(12), 1707–1713. https://doi.org/10.1590/S0100-
204X2006001200004
15.  Sehar, S., Adil, M. F., Askri, S. M. H., Feng, Q., Wei, 
D., Sahito, F. S., & Shamsi, I. H. (2023). Pan-trans-
criptomic Proling Demarcates Serendipita Indi-
ca-Phosphorus Mediated Tolerance Mechanisms 
in Rice Exposed to Arsenic Toxicity. Rice, 16(1), 
28. https://doi.org/10.1186/s12284-023-00645-0
16.  Sun, L., Wang, J., Cui, Y., Cui, R., Kang, R., Zhang, 
Y., Wang, S., Zhao, L., Wang, D., Lu, X., Fan, Y., 
Han, M., Chen, C., Chen, X., Guo, L., & Ye, W. 
(2023). Changes in terpene biosynthesis and sub-
mergence tolerance in cotton. BMC Plant Biolo-
gy, 23(1), 330. https://doi.org/10.1186/s12870-023-
04334-4
17.  Pei, Y., Cao, W., Yu, W., Peng, C., Xu, W., Zuo, Y., 
Wu, W., & Hu, Z. (2023). Identication and func-
tional characterization of the dirigent gene fami-
ly in Phryma leptostachya and the contribution of 
PlDIR1 in lignan biosynthesis. BMC Plant Biolo-