BALANCE ENERGÉTICO NEGATIVO (CETOSIS) EN RUMIANTES CAMÉLIDOS SUDAMERICANOS: REVISIÓN BIBLIOGRÁFICA

Autores/as

  • Tirsa Echeverría Carrera de Medicina Veterinaria, Escuela Superior Politécnica de Chimborazo, Riobamba, Ecuador. Grupo de Investigación en Ciencias Veterinaria, Riobamba, Ecuador
  • Fernanda Núñez Carrera de Medicina Veterinaria, Escuela Superior Politécnica de Chimborazo, Riobamba, Ecuador.
  • Santiago Vásquez Carrera de Medicina Veterinaria, Escuela Superior Politécnica de Chimborazo, Riobamba, Ecuador.
  • Ángel Casierra Carrera de Medicina Veterinaria, Escuela Superior Politécnica de Chimborazo, Riobamba, Ecuador.

Palabras clave:

Cetosis, metabolismo, producción, balance energético negativo, toxemia de gestación

Resumen

La cetosis es una enfermedad metabólica que afecta a animales destinados a la producción de leche, como vacas, ovejas y cabras. La cetosis puede tener un impacto económico significativo debido a los costos de tratamiento y las pérdidas en la producción láctea. La presente revisión bibliográfica tuvo como objetivo analizar diversos aspectos de la cetosis, incluyendo la etiopatología, factores de riesgo, impacto económico, el diagnóstico y las medidas de prevención y manejo de la cetosis en rumiantes y camélidos sudamericanos. Mediante una extensiva búsqueda en bases de datos de LatinIndex, Web of Science, PubMed y Scopus se incluyeron 70 artículos basados en su indexación, relevancia y actualización. En vacas, la cetosis ocurre durante el último tercio de la gestación y el inicio de la lactancia, especialmente en ovejas con una condición corporal elevada. Los síntomas clínicos incluyen retraso en el crecimiento, depresión y dificultad para moverse. En cabras, la toxemia de la gestación es más común que la cetosis de lactancia y se desarrolla en las últimas etapas de la gestación. En camélidos sudamericanos, la toxemia de la gestación es poco común y a menudo es secundaria a otras enfermedades. Un mejor manejo alimentario puede ayudar a prevenir la ingesta insuficiente de energía y la toxemia de la gestación en alpacas. Factores como el número de partos y la condición corporal al parto aumentan el riesgo de cetosis. Sin embargo, la genética, la alimentación adecuada y el monitoreo del hato son medidas importantes para prevenir y manejar la cetosis. En conclusión, este estudio constituye una exhaustiva revisión de los aspectos más importante de la cetosis enfocada en rumiantes y camélido sudamericanos. 

Citas

Oetzel GR. Monitoring and testing dairy herds for metabolic disease. Veterinary Clinics of North America. Food Animal Practice. 2004; 20[3]:651–74.

Zhang G, Ametaj BN. Ketosis an Old Story Under a New Approach. Journal Dairy Science. 2020;1[1]:42-60.

Saborío-Monteri A, Sánchez JM. Prevalencia y factores DE RIESGO relacionados con la cetosis clínica y subclínica tipo I y II en un hato de vacas Jersey en Costa Rica. Agronomía Costarricense. 2013;37[2]:17–9.

Grummer RR. Nutritional and management strategies for the prevention of fatty liver in dairy cattle. Veterinary Journal. 2008;176[1]:10–20.

Knowlton KF, Dawson TE, Glenn BP, Huntington GB, Erdman RA. Glucose Metabolism and Milk Yield of Cows Infused Abomasally or Ruminally with Starch. Journal Dairy Science. 1998;81[12]:3248–58.

Gordon JL, LeBlanc SJ, Duffield TF. Ketosis treatment in lactating dairy cattle. The Veterinary clinics of North America. Food animal practice. 2013;29[2], 433–445.

Duffield T. Subclinical ketosis in lactating dairy cattle. Metabolic disorders of rumiants. 2000;16[2]:1–23.

Djokovic R, Ilic Z, Kurcubic V, Petrovic M, Cincovic M, Petrovic M, et al. Diagnosis of subclinical ketosis in dairy cows. Biotechnology in Animal Husbandry. 2019;35[2]:111– 25.

David Baird G. Primary Ketosis in the High-Producing Dairy Cow: Clinical and Subclinical Disorders, Treatment, Prevention, and Outlook. Journal of Dairy Science. 1982;65[1]:1–10.

David Baird G, Lomax MA, Symonds HW, Shaw SR. Net Hepatic and Splanchnic Metabolism of Lactate, Pyruvate and Propionate in Dairy Cows in vivo in Relation to Lactation and Nutrient Supply. The Biochemical journal. 1980;186[1], 47–57

McArt JAA, Nydam D V., Oetzel GR. Epidemiology of subclinical ketosis in early lactation dairy cattle. Journal Dairy Science. 2012;95[9]:5056–66.

Berge AC, Vertenten G. A field study to determine the prevalence, dairy herd management systems, and fresh cow clinical conditions associated with ketosis in western European dairy herds. Journal Dairy Science. 2014;97[4]:2145–54.

Suthar VS, Canelas-Raposo J, Deniz A, Heuwieser W. Prevalence of subclinical ketosis and relationships with postpartum diseases in European dairy cows. Journal Dairy Science. 2013;96[5]:2925–38.

Vanholder T, Papen J, Bemers R, Vertenten G, Berge ACB. Risk factors for subclinical and clinical ketosis and association with production parameters in dairy cows in the Netherlands. Journal Dairy Science. 2015;98[2]:880–8.

Brunner N, Groeger S, Canelas Raposo J, Bruckmaier RM, Gross JJ. Prevalence of subclinical ketosis and production diseases in dairy cows in Central and South America, Africa, Asia, Australia, New Zealand, and Eastern Europe. Translation Animal Science. 2019;3[1]:102–12.

Galligan D. Economic assessment of animal health performance. Veterinary Clinics of North America. Food Animal Practice. 2006;22[1]:207–27.

Dijkhuizen AA, Morris RS. Animal Health Economies principles and applications. Sydney: University of Sydney. 1997. 310 p.

Gohary K, Overton MW, Massow M Von, Leblanc SJ, Lissemore KD, Duffield TF. The cost of a case of subclinical ketosis in Canadian dairy herds. The Canadian veterinary journal. 2016:57[7]:728–732.

Cainzos JM, Andreu-Vazquez C, Guadagnini M, Rijpert-Duvivier A, Duffield T. A systematic review of the cost of ketosis in dairy cattle. Journal Dairy Science. 2022;105[7]:6175–95.

Ettema JF, Krogh MA, Østergaard S, Crowe M, McLoughlin N, Fahey A, et al. Economic value of information from an alert system on physiological imbalance in fresh cows. Preventive veterinary medicine. 2020;181.

Liang D, Arnold LM, Stowe CJ, Harmon RJ, Bewley JM. Estimating US dairy clinical disease costs with a stochastic simulation model. Journal Dairy Science. 2017;100[2]:1472–86.

Steeneveld W, Amuta P, van Soest FJS, Jorritsma R, Hogeveen H. Estimating the combined costs of clinical and subclinical ketosis in dairy cows. PLoS One. 2020;15[4].

Duffield TF, Lissemore KD, McBride BW, Leslie KE. Impact of hyperketonemia in early lactation dairy cows on health and production. Journal Dairy Science. 2009;92[2]:571– 80.

Ospina PA, Nydam D V., Stokol T, Overton TR. Evaluation of nonesterified fatty acids and β-hydroxybutyrate in transition dairy cattle in the northeastern United States: Critical thresholds for prediction of clinical diseases. Journal Dairy Science. 2010;93[2]:546–54.

Chapinal N, Carson M, Duffield TF, Capel M, Godden S, Overton M, et al. The association of serum metabolites with clinical disease during the transition period. Journal Dairy Science. 2011;94[10]:4897–903.

Roberts T, Chapinal N, LeBlanc SJ, Kelton DF, Dubuc J, Duffield TF. Metabolic parameters in transition cows as indicators for early-lactation culling risk. Journal Dairy Science. 2012;95[6]:3057–63.

McArt JAA, Nydam D V., Overton MW. Hyperketonemia in early lactation dairy cattle: A deterministic estimate of component and total cost per case. Journal Dairy Science. 2015;98[3]:2043–54.

Tyopponen J, Kauppinen K. The stability and automatic determination of ketone bodies in blood samples taken in field conditions. Acta veterinaria Scandinavica. 1980;21[1], 55–61.

Iwersen M, Falkenberg U, Voigtsberger R, Forderung D, Heuwieser W. Evaluation of an electronic cowside test to detect subclinical ketosis in dairy cows. Journal Dairy Science. 2009;92[6]:2618–24.

Andersson L. Metabolic Diseases of Ruminant Livestock Subclinical Ketosis in Dairy Cows. Veterinary Clinics of North America. Food Animal Practice. 1980;4[2]:233-251.

Hansen PW. Screening of dairy cows for ketosis by use of infrared spectroscopy and multivariate calibration. Journal Dairy Science. 1999;82[9]:2005–10.

Larsen T, Nielsen NI. Fluorometric determination of β-hydroxybutyrate in milk and blood plasma. Journal Dairy Science. 2005;88[6]:2004–9.

Zhang Z, Liu G, Wang H, Li X, Wang Z. Pakistan Veterinary Journal Detection of Subclinical Ketosis in Dairy Cows. Pakistan Veterinary Journal. 2012;32[2]:156-160.

Klein MS, Almstetter MF, Schlamberger G, Nürnberger N, Dettmer K, Oefner PJ, et al. Nuclear magnetic resonance and mass spectrometry-based milk metabolomics in dairy cows during early and late lactation. Journal Dairy Science. 2010;93[4]:1539–50.

Elitok B, Solak M, Kabu M, Elitok ÖM, Söylemez Z, Fıstık T. Clinical, Haematological, Serum Biochemical and Cytogenetic Study in Cows with Primary Ketosis. Pakistan Veterinary Journal. 2010;30[3]:150-154.

Jenkins NT, Peña G, Risco C, Barbosa CC, Vieira-Neto A, Galvão KN. Article Utility of inline milk fat and protein ratio to diagnose subclinical ketosis and to assign propylene glycol treatment in lactating dairy cows. The Canadian veterinary journal = La revue veterinaire Canadienne. 2015;56[8]:850–854.

Chládek G. The importance of monitoring changes in milk fat to protein ratio in Holstein cows during lactation. Journal Central European Agriculture. 2005;6[4]:539-546.

Herdt TH. Ruminant adaptation to negative energy balance Influences on the Etiology of Ketosis and Fatty Liver. The Veterinary clinics of North America. Food animal practice.2000;16[2], 215–v.

Schäff C, Börner S, Hacke S, Kautzsch U, Sauerwein H, Spachmann SK, et al. Increased muscle fatty acid oxidation in dairy cows with intensive body fat mobilization during early lactation. Journal Dairy Science. 2013;96[10]:6449–60.

Kroezen V, Schenkel FS, Miglior F, Baes CF, Squires EJ. Candidate gene association analyses for ketosis resistance in Holsteins. Journal Dairy Science. 2018;101[6]:5240– 9.

Zwald NR, Weigel KA, Chang YM, Welper RD, Clay JS. Genetic selection for health traits using producer-recorded data. I. Incidence rates, heritability estimates, and sire breeding values. Journal Dairy Science. 2004;87[12]:4287–94.

Dohoo IR, Martin SW. Subclinical Ketosis: Prevalence and Associations with Production and Disease. Canadian journal of comparative medicine: Revue canadienne de medecine compare. 1984; 48[1]:1–5.

Andersson L, Emanuelson U. An epidemiological study of hyperketonaemia in swedish dairy cows; determinants and the relation to fertility. Preventive Veterinary Medicine. 1985;3[5]:449-462.

Meikle A, Kulcsar M, Chilliard Y, Febel H, Delavaud C, Cavestany D, et al. Effects of parity and body condition at parturition on endocrine and reproductive parameters of the cow. Reproduction [Cambridge, England]. 2004;127[6]:727–37.

Golder HM, McGrath J, Lean IJ. Effect of 25-hydroxyvitamin D3 during prepartum transition and lactation on production, reproduction, and health of lactating dairy cows. Journal Dairy Science. 2021;104[5]:5345–74.

Lean IJ, LeBlanc SJ, Sheedy DB, Duffield T, Santos JEP, Golder HM. Associations of parity with health disorders and blood metabolite concentrations in Holstein cows in different production systems. Journal Dairy Science. 2023;106[1]:500–18.

Drackley JK, Overton TR, Douglas GN. Adaptations of Glucose and Long-Chain Fatty Acid Metabolism in Liver of Dairy Cows during the Periparturient Period. Journal Dairy Science. 200;84: E100–12.

Hostens M, Fievez V, Leroy JLMR, Van Ranst J, Vlaeminck B, Opsomer G. The fatty acid profile of subcutaneous and abdominal fat in dairy cows with left displacement of the abomasum. Journal Dairy Science. 2012;95[7]:3756–65.

Berge AC, Vertenten G. A field study to determine the prevalence, dairy herd management systems, and fresh cow clinical conditions associated with ketosis in western European dairy herds. Journal Dairy Science. 2014;97[4]:2145–54.

Cainzos JM, Andreu-Vazquez C, Guadagnini M, Rijpert-Duvivier A, Duffield T. A systematic review of the cost of ketosis in dairy cattle. Journal Dairy Science. 2022;105[7]:6175–95.

McArt JAA, Nydam D V., Ospina PA, Oetzel GR. A field trial on the effect of propylene glycol on milk yield and resolution of ketosis in fresh cows diagnosed with subclinical ketosis. Journal Dairy Science. 2011;94[12]:6011–20.

Manuel Pinos Rodríguez Médico Veterinario Zootecnista J, Doctor en Cien- M, Potosí Dirección L, del Llano F, Segundo González Muñoz S, Pinos Rodríguez Sergio S González Muñoz. Intercinecia. 2000;20.

Duffield TF, Sandals D, Leslie KE, Lissemore K, McBride BW, Lumsden JH, et al. Efficacy of Monensin for the Prevention of Subclinical Ketosis in Lactating Dairy Cows. Journal Dairy Science. 1998;81[11]:2866–73.

Mammi LME, Guadagnini M, Mechor G, Cainzos JM, Fusaro I, Palmonari A. The use of monensin for ketosis prevention in dairy cows during the transition period: A systematic review. Animals. 2021; 11[7].

Sathish, KB. Incidence, diagnosis and treatment of pregnancy toxaemia in Hassan sheep. The Pharma Innovation Journal. 2023; 12[5]: 3708-3713

Bickhardt K, Grocholl G, Konig G. Glucose metabolism in different reproductive stages of sheep and with ketosis using the intravenous glucose tolerance test. Zentralblatt Veterinarmedizin Reihe A. 1989;36[7]:514-529.

Freetly H, Ferrell C. Net flux of glucose, lactate, volatile fatty acids, and nitrogen metabolites across the portal drained viscera and liver of pregnant ewes. Journal of Animal Science. 1998; 76:3133-3145.

Rook JS. Pregnancy toxemia of ewes, does, and beef cows. Veterinary Clinics of North American Food Animal Practice. 2000; 16:293-317.

Sargison ND. Pregnancy toxaemia. In: Diseases of Sheep. Edt. Aitken, ID, Edn. 4th. Blackwell Publishing; 2007; 359-362.

Marteniuk JV, Herdt TH. Pregnancy toxemia and ketosis of ewes and does. Veterinary Clinics of North American Food Animal Practice. 1988;4[2]:307-315.

Pereira R, Schmitt E, Schneider A, Del Pino FAB, Corrêa MN. Adaptação metabólica em ovelhas gestantes e não gestantes submetidas ao teste de tolerância à glicose. In: Anais do XIX Congresso de Iniciação Científica, Núcleo de Pesquisa, Ensino e Extensão em Pecuária, Universidade, Federal de Pelotas, Pelotas RS, 2010.

Albay MK, Karakurum MC, Sahinduran S, Sezer K, Yildiz R, Buyukoglu T. Selected serum biochemical parameters and acute phase protein level in a herd of Saanen goats showing signs of pregnancy toxemia. Vet Med. 2014; 7:336-342.

Bostedt H, Hamadeh ME. The significance of pregnancy-induced ketonuria in sheep and goats. Tierarztl Prax. 1990; 18:125-129.

Dore V, Dubuc J, Belanger AM, Buczinski S. Evaluation of the accuracy of an electronic farm test to quantify blood β-hydroxybutyrate concentration in dairy goats. J Dairy Sci. 2013; 96:4505-4507.

Gupta VK, Kumar A, Vihan VS, Sharma SD. Alteration in biochemical parameters in subclinical ketosis in goats. Indian Vet J. 2008; 85:1234-1236.

Tornquist SJ, Van Saun RJ, Smith BB, Cebra CK, Snyder SP. Hepatic lipidosis in llamas and alpacas: 31 cases [1991-1997]. J Am Vet Med Assoc. 1999;214[9]:1368- 1372.

Anderson DE, Constable PD, Yvorchuk KE, Anderson NV, St-Jean G, Rock L. Hyperlipemia and ketonuria in an Alpaca and a Llama. J Vet Intern Med. 1994;8[3]:207- 211.

Seeger T, Walter J. Ketosis and hyperlipemia in a female alpaca. A case reports. Tierarztl Prax Ausg G Grosstiere Nutztiere. 2008; 36:333-337.

Waitt LH, Cebra CK. Characterization of hypertriglyceridemia and response to treatment with insulin in llamas and alpacas: 31 cases [1995-2005]. Journal of the American Veterinary Medical Association. 2008;232[9]:1362-1367.

Sylla L, Crociati M. Pregnancy toxemia and lipid mobilization syndrome in two alpacas [Vicugna pacos] at 6 and 10 months of gestation. Large Animal Review. 2020;26[6]:317-320.

Descargas

Publicado

2024-01-04

Cómo citar

Echeverría, T., Núñez, M. F. ., Vásquez, S., & Casierra, Ángel. (2024). BALANCE ENERGÉTICO NEGATIVO (CETOSIS) EN RUMIANTES CAMÉLIDOS SUDAMERICANOS: REVISIÓN BIBLIOGRÁFICA . RECIENA, 4(1), 33–44. Recuperado a partir de https://reciena.espoch.edu.ec/index.php/reciena/article/view/86

Número

Sección

Artículos