PRESENCIA DE MICOTOXINAS Y SUS METABOLITOS, EFECTO DEL CONSUMO EN CEREALES

Autores/as

  • Evelyn Vargas Ingeniera Agroindustrial. Técnico - Docente. Facultad de Ciencias de la Tierra, Universidad Estatal Amazónica, Puyo, Pastaza, Ecuador.
  • Nancy Moreano Investigador Universidad Técnica de Cotopaxi.
  • Janeth Cárdenas Universidad Estatal Amazónica.
  • Stuard Montoya Investigador Independiente

Palabras clave:

Micotoxinas, Riesgo, Prevención, Hongos, Alimentos

Resumen

Las micotoxinas representan metabolitos tóxicos secundarios producidos por diversos hongos filamentosos, entre los cuales se incluyen especies como Fusarium, Penicillium, Drechslera, Aspergillus, Claviceps, Monascum, Alternaria, Cephalosporium, Nigrospora y Trichoderma. En particular, los hongos Aspergillusy Fusariumson considerados los principales patógenos de plantas que provocan infecciones y generan micotoxinas en cultivos destinados al consumo humano. La presente investigación tiene como objetivo determinar la presencia de micotoxinas y sus metabolitos, efecto del consumo en cereales, se realizó una investigación bibliográfica para determinar las variables que más afectan el consumo en cereales y determinar factores que se presentan como resultado en los cuales se menciona que se ha documentado una extensa variedad de más de 400 micotoxinas, y entre ellas destacan la aflatoxina, las fumonisinas, los tricotecenos, la zearalenona, la ocratoxina A, la citrinina, los alcaloides del cornezuelo del centeno y la patulina. Estos compuestos están estrechamente asociados con diversos trastornos de la salud tanto en humanos como en animales, y su presencia en los alimentos puede conllevar serios riesgos para la salud. Las micotoxinas y sus subproductos pueden ocasionar graves intoxicaciones agudas, resultando incluso en la muerte, además de tener efectos perjudiciales a largo plazo para la salud, como el desarrollo de cáncer y trastornos inmunosupresores tanto en seres humanos como en animales. La presencia de micotoxinas en productos agrícolas ha adquirido relevancia a nivel mundial debido a su toxicidad para los seres vivos, así como por su impacto en el comercio internacional. Nuestra meta consiste en brindar información completa acerca de las posibles micotoxinas presentes en los granos destinados al consumo humano y su significativo impacto en la salud humana.

Citas

OMS. (2018, May 9). Micotoxinas.

Wu, F., Groopman, J. D., & Pestka, J. J. (2014). Public Health Impacts of Foodborne Mycotoxins. Annual Review of Food Science and Technology, 5(1), 351–372. https://doi.org/10.1146/annu-rev-food-030713-092431

Vila-López, M. V., Pallarés, N., Ferrer, E., & Tolosa, J. (2023). Mycotoxin Determination and Occurrence in Pseudo-Cereals Intended for Food and Feed: A Review. Toxins, 15(6), 379. https://doi.org/10.3390/toxins15060379

Richard, J. L. (2007). Some major mycotoxins and their mycotoxicoses—An overview. International Journal of Food Microbiology, 119(1–2), 3–10. ht-tps://doi.org/10.1016/j.ijfoodmicro.2007.07.019

Battilani, P., Toscano, P., Van der Fels-Klerx, H. J., Moretti, A., Camardo Leggieri, M., Brera, C., Rortais, A., Goumperis, T., & Robinson, T. (2016). Aflatoxin B1 contamination in maize in Europe increases due to climate change. Scientific Reports, 6(1), 24328. https://doi.org/10.1038/srep24328

Yu, M.-H., Pang, Y.-H., Yang, C., Liao, J.-W., & Shen, X.-F. (2023). Electrochemical oxidation diminished toxicity of zearalenone significantly, while reduction increased. Food Chemistry, 429, 136768. https://doi.org/10.1016/j.foodchem.2023.136768

Teixido-Orries, I., Molino, F., Femenias, A., Ramos, A. J., & Marín, S. (2023). Quantification and classification of deoxynivalenol-contaminated oat samples by near-infrared hyperspectral imaging. Food Chemistry, 417, 135924. https://doi.or-g/10.1016/j.foodchem.2023.135924

Hobé, R. G., van Asselt, E. D., van den Heuvel, L., Hoek-van den Hil, E. F., & van der Fels-Klerx, H. J. (2023b). Methodology for risk-based monitoring of contaminants in food – A case study in cereals and fish. Food Research International, 168, 112791. https://doi.org/10.1016/j.foodres.2023.112791

Köprücü, Y., & Acaroğlu, H. (2023). How cereal yield is influenced by eco-environmental factors? ARDL and spectral causality analysis for Turkey. Cleaner Environmental Systems, 10, 100128. ht-tps://doi.org/10.1016/j.cesys.2023.100128

DeFries, R., Liang, S., Chhatre, A., Davis, K. F., Ghosh, S., Rao, N. D., & Singh, D. (2023). Climate resilience of dry season cereals in India. Scientific Reports, 13(1), 9960. https://doi.org/10.1038/s41598-023-37109-w

Nath, C. P., Dutta, A., Hazra, K. K., Praharaj, C. S., Kumar, N., Singh, S. S., Singh, U., & Das, K. (2023). Long-term impact of pulses and organic amendments inclusion in cropping system on soil physical and chemical properties. Scientific Reports, 13(1), 6508. https://doi.org/10.1038/s41598-023-33255-3

Van de Vondel, J., Janssen, F., Wouters, A. G. B., & Delcour, J. A. (2023). Air-water interfacial and foaming properties of native protein in aqueous quinoa (Chenopodium quinoa Willd.) extracts: Impact of pH- and heat-induced aggregation. Food Hydrocolloids, 144, 108945. https://doi.or-g/10.1016/j.foodhyd.2023.108945

Sanaei Nasab, S., Zare, L., Tahmouzi, S., Nematollahi, A., Mollakhalili-Meybodi, N., Abedi, A.-S., & Delshadian, Z. (2023). Effect of irradiation treatment on microbial, nutritional and technological characteristics of cereals: A comprehensive review. Radiation Physics and Chemistry, 212, 111124. ht-tps://doi.org/10.1016/j.radphyschem.2023.111124

Ocwa, A., Harsanyi, E., Széles, A., Holb, I. J., Szabó, S., Rátonyi, T., & Mohammed, S. (2023). A biblio-graphic review of climate change and fertilization as the main drivers of maize yield: implications for food security. Agriculture & Food Security, 12(1),

https://doi.org/10.1186/s40066-023-00419-315. Katati, B., Schoenmakers, P., Njapau, H., Kachapu-lula, P. W., Zwaan, B. J., van Diepeningen, A. D., & Schoustra, S. E. (2023a). Preharvest Maize Fungal Microbiome and Mycotoxin Contamination: Case of Zambia’s Different Rainfall Patterns. Applied and Environmental Microbiology, 89(6). https://doi.org/10.1128/aem.00078-23

N’zi, F. A.-J. A., Kouakou-Kouamé, C. A., N’gues-san, F. K., Poss, C., Teyssier, C., Durand, N., & Montet, D. (2023). Occurrence of mycotoxins and microbial communities in artisanal infant flours marketed in Côte d’Ivoire. World Journal of Microbiology and Biotechnology, 39(5), 128. https://doi.org/10.1007/s11274-023-03577-5

Zanon, M. S. A., Pena, G., Yerkovich, N., Bossa, M., Chiotta, M. L., & Chulze, S. N. (2023). Aflatoxins and fumonisins in maize under a climate change scenario. Biocontrol strategies at the pre-harvest stage. European Journal of Plant Pathology. https://doi.org/10.1007/s10658-023-02735-7

Kyei-Baffour, V. O., Ketemepi, H. K., Brew-Sam, N. N., Asiamah, E., Baffour Gyasi, L. C., & Amoa-Awua, W. K. (2023). Assessing aflatoxin safety awareness among grain and cereal sellers in greater Accra region of Ghana: A machine learning approach. Heliyon, 9(7), e18320. https://doi.or-g/10.1016/j.heliyon.2023.e18320

Magdalena Pisoschi, A., Iordache, F., Stanca, L., Ionescu Petcu, A., Purdoiu, L., Ionut Geicu, O., Bil-teanu, L., & Iren Serban, A. (2023). Comprehensive overview and critical perspective on the analytical techniques applied to aflatoxin determination – A review paper. Microchemical Journal, 191, 108770. https://doi.org/10.1016/j.microc.2023.108770

Alsulami, T. (2023). Analysis of synthetic food color additive, sugar, and mycotoxin content in traditional, cereal-based Sobia beverage using high-performance liquid chromatography and mass spectrometry. Journal of King Saud University - Science, 35(6), 102736. https://doi.org/10.1016/j.jksus.2023.102736

Arbillaga, L., Azqueta, A., Ezpeleta, O., & Cerain, A. L. d. (2006). Oxidative DNA damage induced by Ochratoxin A in the HK-2 human kidney cell line: evidence of the relationship with cytotoxicity. Mu-tagenesis, 22(1), 35–42. https://doi.org/10.1093/mu-tage/gel049

Śniegocki, T., Raszkowska-Kaczor, A., Bajer, K., Sell, B., Kozdruń, W., Giergiel, M., & Posyniak, A. (2022). A preliminary study of the poultry body weight effect of carvacrol in litter and of carvacrol residue in organ tissue of exposed chickens. Journal of Veterinary Research, 66(4), 613–617. https://doi.org/10.2478/jvetres-2022-0054

Li, A., Hao, W., Guan, S., Wang, J., & An, G. (2022). Mycotoxin contamination in feeds and feed materials in China in year 2020. Frontiers in Veterinary Science, 9. https://doi.org/10.3389/fvets.2022.1016528

Karachaliou, C.-E., Koukouvinos, G., Zisis, G., Ki-zis, D., Krystalli, E., Siragakis, G., Goustouridis, D., Kakabakos, S., Petrou, P., Livaniou, E., & Raptis, I. (2022). Fast and Accurate Determination of Minute Ochratoxin A Levels in Cereal Flours and Wine with the Label-Free White Light Reflectance Spectroscopy Biosensing Platform. Biosensors, 12(10), 877. https://doi.org/10.3390/bios12100877

Erdal, İ., & Yalçın, S. S. (2022). The relationship between ochratoxin A and blood pressure in ado-lescents. Environmental Toxicology and Pharmacology, 95, 103959. https://doi.org/10.1016/j.etap.2022.103959

Tapia, C., & Amaro, J. (2014). Género Fusarium. Revista Chilena de Infectología, 31(1), 85–86. ht-tps://doi.org/10.4067/S0716-10182014000100012

Yao, G., Chen, W., Sun, J., Wang, X., Wang, H., Meng, T., Zhang, L., & Guo, L. (2023). Gapless genome assembly of Fusarium verticillioides, a filamentous fungus threatening plant and hu-man health. Scientific Data, 10(1), 229. https://doi.org/10.1038/s41597-023-02145-8

Ma, L.-J., Geiser, D. M., Proctor, R. H., Rooney, A. P., O’Donnell, K., Trail, F., Gardiner, D. M., Manners, J. M., & Kazan, K. (2013). Fusarium Patho-genomics. Annual Review of Microbiology, 67(1), 399–416. https://doi.org/10.1146/annurev-mi-cro-092412-155650

Chavarri, M. C., Barroyeta, J., Ochoa Sánchez, Y. D., Rumbos Escalona, N. B., & Alezones, J. (2017). Detección de fusarium verticillioides y fumonisinas en granos de maíz blanco provenientes de los estados Yaracuy y Guárico, Venezuela. Nova Scientia, 9(19), 171. https://doi.org/10.21640/ns.v9i19.1035

Ahangarkani, F., Rouhi, S., & Gholamour Azizi, I. (2014). A review on incidence and toxicity of fumo-nisins. Toxin Reviews, 33(3), 95–100. https://doi.org/10.3109/15569543.2013.871563

Mohammedi, D., Mohammedi, S., & Kardjadj, M. (2021). Prévalence des fumonisines dans les ali-ments pour volaille en Algérie. Revue d’élevage et de Médecine Vétérinaire Des Pays Tropicaux, 74(4), 207–211. https://doi.org/10.19182/rem-vt.36814

Martinez, M., Castañares, E., Dinolfo, M. I., Pache-co, W. G., Moreno, M. V., & Stenglein, S. A. (2014). Presencia de Fusarium graminearum en muestras de trigo destinado al consumo humano. Revista Argentina de Microbiología, 46(1), 41–44. https://doi.org/10.1016/S0325-7541(14)70046-X

Jimenez-Garcia, S. N., Garcia-Mier, L., Garcia-Tre-jo, J. F., Ramirez-Gomez, X. S., Guevara-Gonzalez, R. G., & Feregrino-Perez, A. A. (2018). Fusarium Mycotoxins and Metabolites that Modulate Their Production. In Fusarium - Plant Diseases, Pathogen Diversity, Genetic Diversity, Resistance and Molecular Markers. InTech. https://doi.org/10.5772/intechopen.72874

Narváez, A., Castaldo, L., Izzo, L., Pallarés, N., Rodríguez-Carrasco, Y., & Ritieni, A. (2022). Deoxyni-valenol contamination in cereal-based foodstuffs from Spain: Systematic review and meta-analysis approach for exposure assessment. Food Control, 132, 108521. https://doi.org/10.1016/j.food-cont.2021.108521

Awad, W. A., Ghareeb, K., Böhm, J., & Zentek, J. (2010). Decontamination and detoxification strategies for the Fusarium mycotoxin deoxy-nivalenol in animal feed and the effectiveness of microbial biodegradation. Food Additives & Contaminants: Part A, 27(4), 510–520. https://doi.org/10.1080/19440040903571747

Gajecki, M. (2002). Zearalenone--undesirable substances in feed. Polish Journal of Veterinary Sciences, 5(2), 117–122.

Gómez, A. (2007). Alimentos y micotoxinasImpli-caciones en la seguridad alimentaria.

Katati, B., Schoenmakers, P., Njapau, H., Kachapu-lula, P. W., Zwaan, B. J., van Diepeningen, A. D., & Schoustra, S. E. (2023b). Preharvest Maize Fungal Microbiome and Mycotoxin Contamination: Case of Zambia’s Different Rainfall Patterns. Applied and Environmental Microbiology, 89(6). https://doi.org/10.1128/aem.00078-23

Zargar, S., & Wani, T. A. (2023). Food Toxicity of Mycotoxin Citrinin and Molecular Mechanisms of Its Potential Toxicity Effects through the Implicated Targets Predicted by Computer-Aided Multidi-mensional Data Analysis. Life, 13(4), 880. https://doi.org/10.3390/life13040880

San, V. ", Mártir, V., Valencia, ", Castañeda Sánchez, R., Chirivella Martorell, J., & Carbonell Baldoví, E.(2012). Micotoxicosis derivadas de la nutrición animal. Revisión del tema.

Piquemal, R., Emmerich, J., Guilmot, J. L., & Fiessinger, J. N. (1998). Successful Treatment of Ergotism with Iloprost. Angiology, 49(6), 493–497. https://doi.org/10.1177/000331979804900612

Límite legal. (n.d.).

Correia, T., Grammel, N., Ortel, I., Keller, U., & Tudzynski, P. (2003). Molecular Cloning and Analysis of the Ergopeptine Assembly System in the Ergot Fungus Claviceps purpurea. Chemistry & Biology, 10(12), 1281–1292. https://doi.org/10.1016/j.chem-biol.2003.11.013

Tricotecenos, F. (2015). Micotoxicosis y micotoxinas: generalidades y aspectos básicos. 29(1).

Alkuwari, A., Hassan, Z. U., Zeidan, R., Al-Thani, R., & Jaoua, S. (2022). Occurrence of Mycotoxins and Toxigenic Fungi in Cereals and Application of Yeast Volatiles for Their Biological Control. Toxins, 14(6), 404. https://doi.org/10.3390/toxins14060404

Kumar, P., Mahato, D. K., Gupta, A., Pandey, S., Paul, V., Saurabh, V., Pandey, A. K., Selvakumar, R., Barua, S., Kapri, M., Kumar, M., Kaur, C., Tri-pathi, A. D., Gamlath, S., Kamle, M., Varzakas, T., & Agriopoulou, S. (2022). Nivalenol Mycotoxin Concerns in Foods: An Overview on Occurrence, Impact on Human and Animal Health and Its Detection and Management Strategies. Toxins, 14(8), 527. https://doi.org/10.3390/toxins14080527

Richard-Forget, F., Atanasova, V., & Chéreau, S. (2021). Using metabolomics to guide strategies to tackle the issue of the contamination of food and feed with mycotoxins: A review of the literature with specific focus on Fusarium mycotoxins. Food Control, 121, 107610. https://doi.org/10.1016/j.foo-dcont.2020.107610

Mir, S. A., Dar, B. N., Shah, M. A., Sofi, S. A., Hamdani, A. M., Oliveira, C. A. F., Hashemi Moosavi, M., Mousavi Khaneghah, A., & Sant’Ana, A. S. (2021). Application of new technologies in de-contamination of mycotoxins in cereal grains: Challenges, and perspectives. Food and Chemical Toxicology, 148, 111976. https://doi.org/10.1016/j.fct.2021.111976

Azam, Md. S., Ahmed, S., Islam, Md. N., Maitra, P., Islam, Md. M., & Yu, D. (2021). Critical Assessment of Mycotoxins in Beverages and Their Control Measures. Toxins, 13(5), 323. https://doi.org/10.3390/toxins13050323

Turner, P. C., & Snyder, J. A. (2021). Development and Limitations of Exposure Biomarkers to Dietary Contaminants Mycotoxins. Toxins, 13(5), 314. https://doi.org/10.3390/toxins13050314

Mousavi Khaneghah, A., Hashemi Moosavi, M., Oliveira, C. A. F., Vanin, F., & Sant’Ana, A. S. (2020). Electron beam irradiation to reduce the mycotoxin and microbial contaminations of cereal-based products: An overview. Food and Chemical Toxicology, 143, 111557. https://doi.org/10.1016/j.fct.2020.111557

Peñafiel, M. (2022). Estudio de la generación de ocratoxina A en el proceso primario de la quinua (Chenopodium quinoa Willd.) y su efecto en la salud humana.

Golinski, P., Chelkowski, J., Konarkowski, A., & Szebiotko, K. (1983). Mycotoxins in cereal grain. Part VI. The effect of ochratoxin A on growth and tissue residues of the mycotoxin in broiler chickens. Food / Nahrung, 27(3), 251–256. https://doi.org/10.1002/food.19830270318

Miller, J. D., Schaafsma, A. W., Bhatnagar, D., Bondy, G., Carbone, I., Harris, L. J., Harrison, G., Munkvold, G. P., Oswald, I. P., Pestka, J. J., Sharpe, L., Sumarah, M. W., Tittlemier, S. A., & Zhou, T. (2014). Mycotoxins that affect the North American agri-food sector: state of the art and directions for the future. World Mycotoxin Journal, 7(1), 63–82. https://doi.org/10.3920/WMJ2013.1624

Patel, H. K., Kalaria, R. K., Kahimani, M. R., Shah, G. S., & Dholakiya, B. Z. (2021). Prevention and control of mycotoxins for food safety and security of human and animal feed. In Fungi Bio-Prospects in Sustainable Agriculture, Environment and Nano-technology (pp. 315–345). Elsevier. https://doi.org/10.1016/B978-0-12-821734-4.00013-7

Descargas

Publicado

2024-01-04

Cómo citar

Vargas Peralvo, E. A. ., Moreano Terán, N. F., Cárdenas, M. J. ., & Montoya Vizuete, S. N. . (2024). PRESENCIA DE MICOTOXINAS Y SUS METABOLITOS, EFECTO DEL CONSUMO EN CEREALES. RECIENA, 4(1), 87–98. Recuperado a partir de https://reciena.espoch.edu.ec/index.php/reciena/article/view/99

Número

Sección

Artículos